Bases: pybrain.structure.modules.neuronlayer.NeuronLayer
A simple bias unit with a single constant output.
Bases: pybrain.structure.modules.neuronlayer.NeuronLayer, pybrain.structure.parametercontainer.ParameterContainer
A layer implementing a gaussian interpretation of the input. The mean is the input, the sigmas are stored in the module parameters.
Bases: pybrain.structure.modules.neuronlayer.NeuronLayer
The simplest kind of module, not doing any transformation.
Bases: pybrain.structure.modules.neuronlayer.NeuronLayer, pybrain.structure.parametercontainer.ParameterContainer
Long short-term memory cell layer.
The input consists of 4 parts, in the following order: - input gate - forget gate - cell input - output gate
Parameter: | dim – number of cells |
---|---|
Key peepholes: | enable peephole connections (from state to gates)? |
Bases: pybrain.structure.modules.neuronlayer.NeuronLayer, pybrain.structure.parametercontainer.ParameterContainer
Multi-dimensional long short-term memory cell layer.
The cell-states are explicitly passed on through a part of the input/output buffers (which should be connected correctly with IdentityConnections).
The input consists of 4 parts, in the following order: - input gate - forget gates (1 per dim) - cell input - output gate - previous states (1 per dim)
The output consists of two parts: - cell output - current statte
Attention: this module has to be used with care: it’s last <size> input and outputs are reserved for transmitting internal states on flattened recursive multi-dim networks, and so its connections have always to be sliced!
Bases: pybrain.structure.modules.neuronlayer.NeuronLayer
Layer implementing the sigmoid squashing function.
Bases: pybrain.structure.modules.neuronlayer.NeuronLayer
A layer implementing a softmax distribution over the input.